M icroprocessors and Microcontrollers
 (EE-231)

Lab-6

M ain Objectives

- Implementation of a simple DIGITAL CLOCK on Easy8051v6 Development Board

Unpacked BCD increment logic

- For Digital clock we will make 4 variables in Registers with name, Dig_1, Dig_2, Dig_3, and Dig_4. We will have to implement an increment logic that follows decimal counting.
- For that, we will have to monitor the digit to see if it has become 9.
- Then, we will make it zero and increment the next digit.

Todays Task 1

- Design a seconds counter which counts from 0000-9999 in KEIL and run it on easy 8051 v6 development system. The output should be displayed on seven segments.

Task Code

```
```

1 pRG OH

```
```

1 pRG OH
2 DIG_1 EQU R7
2 DIG_1 EQU R7
3 DIG_2 EQU R6
3 DIG_2 EQU R6
4 DIG_3 EQU R5
4 DIG_3 EQU R5
5 DIG_4 EQU R4
5 DIG_4 EQU R4
6 MOV DPTR,\#2OOH
6 MOV DPTR,\#2OOH
7
7
8;Start of Main Code
8;Start of Main Code
9 START:
9 START:
10 MOV R3,\#255
10 MOV R3,\#255
11 LOOP:
11 LOOP:
12 MOV A,DIG 1
12 MOV A,DIG 1
13 MOVC A,@A+DPTR
13 MOVC A,@A+DPTR
14 MOV P1,\#01H
14 MOV P1,\#01H
15 MOV PO,A
15 MOV PO,A
16 ACALL DELAY
16 ACALL DELAY
17
17
18 MOV A,DIG_2
18 MOV A,DIG_2
19MOVC A,@A+DPTR
19MOVC A,@A+DPTR
20 MOV P1,\#02H
20 MOV P1,\#02H
21 MOV PO,A
21 MOV PO,A
22 ACALL DELAY
22 ACALL DELAY
23
23
24 MOV A,DIG 3
24 MOV A,DIG 3
25 MOVC A,@A+DPTR
25 MOVC A,@A+DPTR
26 MOV P1,\#04H

```
```

26 MOV P1,\#04H

```
```

27 MOV PO, A.
28 ACALL DELAY
29
30 MOV A, DIG 4
31 MOVC A, @A+DPTR
32 MOV P1, \#08H
33 MOV PO, A
34 ACALL DELAY
35 DJNZ R3,LOOP
36
37 ; INCREMENT LOGIC
38
39 CJNE DIG_1,\#09H,STEP1
40 CJNE DIG 2, \#09H,STEP2
41 CJNE DIG_3, \#09H,STEP3
42 CJNE DIG 4, \#09H,STEP4
43 MOV DIG_4,\#00H
44 MOV DIG_4,\#00
45 MOV DIG $4, \# 00 \mathrm{H}$
46 MOV DIG_4, $\# 00 \mathrm{H}$
47 SJMP START
48 STEP1:
49 INC DIG 1
49 INC DIG_1
50 SJMP START
51
52 STEP2:
53 MOV DIG 1, $\# 00 \mathrm{H}$
54 INC DIG ${ }^{-} 2$
55 SJMP START
56
57 STEP3:
58 MOV DIG $1, \# 00 \mathrm{H}$
59 MOV DIG_2, $\mathrm{\#} 0 \mathrm{OH}$
60 INC DIG 3
61 SJMP STĀRT
62
63 STEP4:
64 MOV DIG_1, $\# 00 \mathrm{H}$
65 MOV DIG_2,\#00H
66 MOV DIG_3, $\# 00 \mathrm{H}$
67 INC DIG_4
68 SJMP START
69
70 ;--Delay Sub-Routine
71 DELAY:
72 MOV RO,255 ;DELAY
73 HERE: DJNZ RO, HERE
74 RET

Todays Task 2

- Design a digital clock in KEIL and run it on easy 8051v6 development system. The output should be displayed on seven segments.
-

Proteus Diagram

